Thursday, 28 de March de 2024

Circuito Aleph

Lunes, 18 Agosto 2014 11:13
Julio García

¿Por qué las partículas no pueden ocupar el mismo espacio al mismo tiempo?

Por :
  • Imprimir
  • Email

Columnas Anteriores

Existe un principio de exclusión en la mecánica cuántica que afirma que es imposible que dos electrones en un átomo puedan tener la misma energía, el mismo lugar, e idénticos números cuánticos. En otras palabras, es imposible que existen dos cosas en un mismo lugar. Gracias a este principio, los objetos existen tal y como son.

¿Pero quién fue la persona encargada de dar a conocer por primera vez este principio?

El físico encargado de hacerlo se llama Wolfgang Ernst Pauli, quien nacióen Viena el 25 de abril de 1900. En 1918 se licencióen física y en 1921 logrósu doctorado, también en física, a partir de un artículo sobre la Teoría General de la Relatividad de Albert Einstein.

Para comprender mejor el principio de exclusión debemos decir que en la realidad, al menos aquella que podemos observar, existen dos tipos de partículas: los fermiones y los bosones. Los primeros se caracterizan por tener espín semientero (1/2, 2/3…etc.). Cuando nos referimos a la palabra spín estamos hablando del giro que tienen todas las partículas (imaginemos a una bailarina que gira sobre su propio eje pero a diferentes velocidades). Los fermiones están divididos a su vez en quarks y leptones: los quarks son las partículas que forman el núcleo de los átomos y los leptones a los electrones que giran en del núcelo atómico. Hay que decir que toda la materia con la que interactuamos (desde los elementos químicos más básicos, hasta las galaxias más grandes) están formadas por quarks y leptones

Por el contrario, los bosones tienen un espín entero (0,1,2…etc.) y no cumplen con el principio de exclusión de Paoli (los bosones pueden estar en dos lugares a la vez al mismo tiempo, al contrario de lo que sucede con los fermiones, como ya hemos señalado).

En este sentido, la ciencia estállena de teorías que muchas veces tienen que ser desechadas cuando se les contrasta con la realidad. Pero en el caso del bosón de Higgs esto no sucedió. Su existencia ha sido demostrada gracias al Acelerador de Partículas que se encuentra en el CERN de Ginebra, Suiza. El esperado anuncio se hizo el 4 de Julio de 2012 y para 8 de octubre de 2013 Peter Higgs, junto con François Englert, recibieron el Premio Nobel de Física por su descubrimiento.

En resumen, el campo de Higgs debe ser considero como un campo que llena todo el vacío. La presencia de masa es el resultado de la interacción de las partículas elementales con este campo vacío. En este sentido el campo de Higgs podría ser tan importante como la curvatura del espacio-tiempo que es la que al fin y al cabo produce la gravedad. Recordemos que Albert Einstein propuso en 1915 que entre más masivo es un cuerpo, mayor es la curvatura que produce en el espacio-tiempo el cual puede ser imaginado como una gran cama elástica que se deforma por la presencia de la masa que producen los cuerpos masivos tal es como las estrellas, los planetas y las galaxias.

Comentarios: garcajulio@gmail.com